Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Modern Physics Letters B ; : 1, 2021.
Article in English | Academic Search Complete | ID: covidwho-1322853

ABSTRACT

Phase change material (PCM) is useful for the storage and release of latent heat. However, its ability to conduct has hindered its engineering application. This study prepares a novel microencapsulated phase change material (MEPCM) by suspension polymerization. To improve the adhesion between the shell and the inorganic additive, triethoxyvinylsilane was incorporated copolymerizing with methyl methacrylate. Thermally conductive nanographite particle was added. This MEPCM was then incorporated into high-density polyethylene (HDPE) to form a series of thermally conductive PCM microcapsules that approached sphere shapes with diameters less than 2 μm. Thermal analysis showed that the thermal stability and heat resistance of the microcapsule were improved. The thermal conductivity of HDPE was increased by 39% to 0.6358 W/m ⋅K, and the surface resistivity was lowered to 2.78 × 105 Ω/sq after the addition of MEPCM. The temperature on the top of the composite tested was lower than pristine HDPE. This was close to the onset melting temperature of the MEPCM (38.5∘C), ∼5∘C lower than pure HDPE. The reduction is a significant improvement in temperature regulation. This enables MEPCMs to store and release heat much more effectively, and can thus be applied to medical construction materials to meet the temperature requirements of COVID-19 patients. [ABSTRACT FROM AUTHOR] Copyright of Modern Physics Letters B is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

2.
JMIR Public Health Surveill ; 6(3): e19399, 2020 08 13.
Article in English | MEDLINE | ID: covidwho-713604

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the number of cases of coronavirus disease (COVID-19) in the United States has exponentially increased. Identifying and monitoring individuals with COVID-19 and individuals who have been exposed to the disease is critical to prevent transmission. Traditional contact tracing mechanisms are not structured on the scale needed to address this pandemic. As businesses reopen, institutions and agencies not traditionally engaged in disease prevention are being tasked with ensuring public safety. Systems to support organizations facing these new challenges are critically needed. Most currently available symptom trackers use a direct-to-consumer approach and use personal identifiers, which raises privacy concerns. OBJECTIVE: Our aim was to develop a monitoring and reporting system for COVID-19 to support institutions conducting monitoring activities without compromising privacy. METHODS: Our multidisciplinary team designed a symptom tracking system after consultation with experts. The system was designed in the Georgetown University AvesTerra knowledge management environment, which supports data integration and synthesis to identify actionable events and maintain privacy. We conducted a beta test for functionality among consenting Georgetown University medical students. RESULTS: The symptom tracker system was designed based on guiding principles developed during peer consultations. Institutions are provided access to the system through an efficient onboarding process that uses clickwrap technology to document agreement to limited terms of use to rapidly enable free access. Institutions provide their constituents with a unique identifier to enter data through a web-based user interface to collect vetted symptoms as well as clinical and epidemiologic data. The website also provides individuals with educational information through links to the COVID-19 prevention recommendations from the US Centers for Disease Control and Prevention. Safety features include instructions for people with new or worsening symptoms to seek care. No personal identifiers are collected in the system. The reporter mechanism safeguards data access so that institutions can only access their own data, and it provides institutions with on-demand access to the data entered by their constituents, organized in summary reports that highlight actionable data. Development of the system began on March 15, 2020, and it was launched on March 20, 2020. In the beta test, 48 Georgetown University School of Medicine students or their social contacts entered data into the system from March 31 to April 5, 2020. One of the 48 users (2%) reported active COVID-19 infection and had no symptoms by the end of the monitoring period. No other participants reported symptoms. Only data with the unique entity identifier for our beta test were generated in our summary reports. CONCLUSIONS: This system harnesses insights into privacy and data sharing to avoid regulatory and legal hurdles to rapid adaption by entities tasked with maintaining public safety. Our pilot study demonstrated feasibility and ease of use. Refinements based on feedback from early adapters included release of a Spanish language version. These systems provide technological advances to complement the traditional contact tracing and digital tracing applications being implemented to limit SARS-CoV-2 transmission during reopening.


Subject(s)
Commerce/organization & administration , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health Surveillance/methods , Safety , COVID-19 , Contact Tracing/economics , Coronavirus Infections/epidemiology , Feasibility Studies , Humans , Pilot Projects , Pneumonia, Viral/epidemiology , Privacy , Symptom Assessment , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL